Skip to content

Quickstart

Meet fastquadtree — a Rust powered spatial index for Python

TLDR: create a tree, insert points, insert boxes, query ranges or nearest neighbors.

Installation

pip install fastquadtree

30-second demo

from fastquadtree import QuadTree

# 1) Make a tree that covers your world
qt = QuadTree(bounds=(0, 0, 1000, 1000), capacity=20)

# 2) Add some stuff (a, b, and c are auto-generated ids)
a = qt.insert((10, 10))
b = qt.insert((200, 300))
c = qt.insert((999, 500))

# 3) Ask spatial questions
print("Range hits:", qt.query((0, 0, 250, 350)))  # -> [(id, x, y), ...]

print("Nearest to (210, 310):", qt.nearest_neighbor((210, 310)))
# -> (1, 200.0, 300.0)

print("Top 3 near (210, 310):", qt.nearest_neighbors((210, 310), 3))
# -> [(1, 200.0, 300.0), (0, 10.0, 10.0), (2, 999.0, 500.0)]

# 4) Delete by id and exact location
print("Deleted:", qt.delete(b, 200, 300))
print("Count:", len(qt))  # -> 2

# 5) Update position by id and exact location
success = qt.update(a, 10, 10, 35, 35)  # Move point a to (35, 35)
print("Update success:", success)  # -> True

Range queries that feel natural

# Think of it like a camera frustum in 2D
viewport = (100, 200, 400, 600)
for id_, x, y in qt.query(viewport):
    print(f"Visible: id={id_} at ({x:.1f}, {y:.1f})")

Use this for viewport culling, collision broad-phase, spatial filtering, and quick “what is inside this box” checks.


Nearest neighbor for snapping and picking

cursor = (212, 305)
hit = qt.nearest_neighbor(cursor)
if hit:
    id_, x, y = hit
    print(f"Closest to cursor is id={id_} at ({x:.1f}, {y:.1f})")

Need more than one neighbor

for id_, x, y in qt.nearest_neighbors(cursor, k=5):
    print(id_, x, y)

Track Python objects when you need them

Use QuadTreeObjects to bind your own objects to spatial coordinates. Object lookups for deletion are O(1).

from fastquadtree import QuadTreeObjects

qt = QuadTreeObjects((0, 0, 1000, 1000), capacity=16)

player = {"name": "Alice", "hp": 100}
enemy  = {"name": "Boblin", "hp": 60}

pid = qt.insert((50, 50), obj=player)
eid = qt.insert((80, 60), obj=enemy)

# Query returns Item objects with both coordinates and the stored object
items = qt.query((0, 0, 200, 200))
for item in items:
    print(item.id_, item.x, item.y, item.obj)

# Remove by object identity (returns deletion count)
deleted = qt.delete_by_object(player)  # 1

Tip: Use QuadTree instead of QuadTreeObjects for max speed when you do not need object tracking.


Reset between runs without breaking references

Keep the same QuadTree instance alive for UIs or game loops. Wipe contents and optionally reset ids.

qt.clear()  # tree is empty, auto ids start again at 0, all objects forgotten

Tiny benchmark sketch

import random, time
from fastquadtree import QuadTree

N = 200_000
pts = [(random.random()*1000, random.random()*1000) for _ in range(N)]
qt = QuadTree((0, 0, 1000, 1000), capacity=32)

t0 = time.perf_counter()
qt.insert_many(pts)
t1 = time.perf_counter()

hits = qt.query((250, 250, 750, 750))
t2 = time.perf_counter()

print(f"Build: {(t1-t0):.3f}s  Query: {(t2-t1):.3f}s  Hits: {len(hits)}")

Common patterns

  • Use capacity 8 to 64 for most workloads If data is highly skewed, set a max_depth to avoid very deep trees.
  • Use clear() to reset when most points are moving rather than deleting and reinserting.
  • Use insert_many() to bulk load a large batch of points at once.